
QULATIS: A Quantum Error Correction
Methodology toward Lattice Surgery

Yosuke Ueno1, 2, Masaaki Kondo2, 3, Masamitsu Tanaka4, Yasunari Suzuki5, 6, and Yutaka Tabuchi7

1Graduate School of Information Science and Technology, The University of Tokyo
2Faculty of Science and Technology, Keio University

3RIKEN Center for Computational Science
4Graduate School of Engineering, Nagoya University

5NTT Computer and Data Science Laboratories
6JST PRESTO

7RIKEN Center for Quantum Computing

ueno@hal.ipc.i.u-tokyo.ac.jp, kondo@acsl.ics.keio.ac.jp
masami t@nagoya-u.jp, yasunari.suzuki.gz@hco.ntt.co.jp, yutaka.tabuchi@riken.jp

Abstract—Due to the high error rate of a qubit, detect-
ing and correcting errors on it is essential for fault-tolerant
quantum computing (FTQC). Surface code (SC) associated with
its decoding algorithm is one of the most promising quantum
error correction (QEC) methods because it has high fidelity and
requires only nearest neighbor qubits connectivity. To realize
FTQC, we need a decoder circuit capable of not only QEC in a
3-D lattice to deal with errors in measurement on ancillary qubits
but also quantum operations on logically constructed qubits.
Whereas several methods to perform logical operations on SC,
such as lattice surgery (LS), are known, no practical decoders
supporting them have been proposed yet.

One of the most promising QC implementations today is made
up of superconducting qubits that are located in a cryogenic
environment. To reduce the hardware complexity of QC and
latency of QEC, we are supposed to perform QEC in a cryogenic
environment. Hence a power-efficient decoder is required due to
the limited power budget inside a dilution refrigerator.

In this paper, we propose an online-QEC algorithm that
supports LS with a practical decoder circuit, as well as a
new FTQC architecture. We design a key building block of
the proposed architecture with a hybrid of SFQ- and Cryo-
CMOS-based digital circuits and evaluate it with a SPICE-level
simulation. Each logic element includes about 2400 Josephson
junctions, and power consumption is estimated to be 2.07 µW
when operating with a 2 GHz clock frequency. We evaluate
the decoder performance by a quantum error simulator for an
essential operation of LS with code distances up to 11, and it
achieves a 0.6% accuracy threshold. In an LS-based architecture
further supporting a magic-state distillation protocol, which is
expected to run for near-term universal quantum computing, we
evaluate the QEC performance and power consumption of the
architecture and show that it is practical to be operated in 4-K
temperature region of a dilution refrigerator.

Index Terms—Quantum Computing, Quantum Error Correc-
tion, Single flux quantum (SFQ)

I. INTRODUCTION

Quantum computers (QCs) are becoming an attractive com-
puting paradigm as the number of implementable qubits in-
creases, given they have the potential to solve several problems

efficiently. Whereas more than 53 qubits are implemented in
state-of-the-art QCs [1], [2], there remain several challenges
to increase the number of qubits; for example, fragile qubits
are a critical bottleneck for practical quantum computation.
As quantum error correction (QEC) is the unique method
to reduce the effective error rate of quantum gates in a
scalable manner, it has been extensively studied so far [3]–
[7]. Given a direct measurement on informational qubits at
an error detection process in QEC is prohibited due to the
nature of the quantum mechanics, ancillary qubits (ancilla bits)
are equipped with the informational qubits to observe their
error parity indirectly. The locations of erroneous qubits are
inferred from measurement outcomes of the ancillary qubits.
The procedure is called decoding. The decoding procedure
is known to be a non-trivial task, and it requires a large
amount of computational cost in classical computers. Thus,
the QEC coding/decoding schemes should be optimized both
in algorithmic and implementation perspectives.

One of the most promising QC implementations today is
superconducting quantum circuits [1], [2]. They are operated
in a cryogenic environment with an effective temperature of
around ten milliKelvins to eliminate thermal noises in the
device. While we place the qubits at the milliKelvin stage
of a dilution refrigerator, the associated control electronics,
including a QEC processing unit, are supposed to be located
at a higher temperature stage or outside the cryostat. [8]. The
spatial distance between the components demands many cables
between different temperature stages, leading to the hardware
complexity in wiring and latency in QEC. This point hinders
scaling up QCs. Although the QEC processing unit right next
to the qubit chip alleviates this problem [9], it is usually
unrealistic under the restricted power budget in the lower
temperature stages of a cryostat (e.g., tens of µW or around
1 W in the millikelvin stage or the 4-K stage, respectively).
Extraordinary low-power QEC is necessary. The same problem
applies to other types of solid-state qubits that operate in a

i

cryogenic environment, e.g. spin qubits in donor silicon and
MOS-type double quantum dots.

Surface code (SC) [6] is a promising candidate in practical
QEC coding schemes. SC is implemented on a square grid
of qubits and only requires interactions between geometrically
adjacent physical qubits. These features simplify the hardware
implementation and provide extendability and high reliability
in QEC. It is known that the decoding capability only for the
two-dimensional (2-D) plane of ancilla bits is insufficient to re-
alize fault-tolerant quantum computing (FTQC). SC decoders
are requested to perform 1) QEC on a three-dimensional (3-
D) lattice to deal with measurement errors and 2) quantum
gate operations among logically constructed qubits. Although
most SC decoders for 2-D lattices are extendable to 3D,
the computational complexity of decoding typically increases
significantly. There have been several proposals to perform
quantum gate operations with SC-based QEC [7], [10]. In
particular, lattice surgery (LS) is considered as the current
state-of-the-art method to perform logical operations among
logical qubits, and most FTQC techniques have been proposed
based on the combination of SC and LS [11]–[16].

Finding the most probable error locations and types in
a qubit array can be solved using a minimum-weight per-
fect matching (MWPM) algorithm with approximations. The
MWPM guarantees a polynomial-time solution; however, it
requires a high computational cost. Several low-cost decoding
algorithms and their implementations [17]–[21] have been
proposed to reduce the computational burden. Most of them
except for [21] are mainly discussed for 2-D cases, and all
of them are designed for single logical qubit protection. To
our best knowledge, no prior research has been reported on
the low-cost decoder algorithm or architectural design of QEC
capable of quantum operations among multiple logical qubits.
Again, QEC processors having low latency and low power
consumption are preferable for scalability.

In this paper, we propose QULATIS, a QUantum error
correction methodology for LATtIce Surgery, and a decoder
implementation using a hybrid of Cryo-CMOS and single
flux quantum (SFQ) digital circuits. For a low latency case,
references [20], [21] pointed out that ancilla-qubit measure-
ment and decoding processes can be overlapped instead of
waiting for completing measurements before a decoding phase.
In other words, we can simultaneously execute the measure-
ment and decoding processes. The overlapped ones are called
online-QEC, and the conventional ones are referred to as
batch-QEC [21]. When designing a decoder architecture with
LS, the number of measurements required for 3-D SC decod-
ing becomes much greater than that for single logical qubit
protection. The vast amount of error information in batch-QEC
makes QEC latency worse and degrades the error correction
accuracy. Hence, we employ the online-QEC technique in our
decoder architecture.

The contributions of this paper are summarized as follows:

• We propose the QULATIS concept and an SC decoding
algorithm with LS support.

• We propose the QULATIS architecture to support FTQC
and a hybrid of Cryo-CMOS and SFQ logic design based
on QULATIS architecture.

• We evaluate the power consumption and area of a key
building block of QULATIS architecture with a SPICE-
level simulator.

• We evaluate the error correction performance of QU-
LATIS by a quantum error simulator.

We evaluate the QEC performance using a typical magic-state
distillation circuit [11] which frequently appears in practical
FTQC processing [22], [23] and requires logical Pauli-X
measurements on eight logical qubits. The evaluation results
show that our FTQC architecture can perform sufficiently low-
latency QEC for LS and achieve low-power consumption.

Although we focus on superconducting qubits in this paper,
our method is applicable to any QC system with SC. Due to
the scalability issues of wiring cables between cryogenic and
room temperature environments, it is especially beneficial in
implementing our decode process by an SFQ digital logic for
solid-state qubits operated in a cryogenic environment.

II. BACKGROUND

A. Quantum computation with superconducting qubits

Quantum computing has enabled exponential speed-ups
of several computational tasks [24], [25], retrieval of rich
information with small queries [26], and information-theoretic
security with a simple proof [27]. Thus, many research groups
have focused on developing useful QCs [1]. A unit of quantum
data, called a qubit, can preserve not only binary information
but also its phase. Arbitrary processing on qubits can be
constructed as a combination of a universal set of quantum
operations, such as Hadamard, CNOT, and T gates [28]. To
extract information from quantum states, we need to measure
each qubit state. A Pauli measurement is a class of binary
measurement operations that are characterized by n-qubit Pauli
operators. See [28] for a basic introduction.

Since the theory of QCs was established, many experimental
efforts have been paid for exploring scalable and controllable
quantum devices. A qubit implementation consisting of super-
conducting circuits [1], [2], [29] is one of the most promising
candidates because of its scalability, controllability, and long
lifetime. Currently, the lifetime of superconducting qubits is
about 1 ms, and local physical operations, as well as Pauli
measurements, are operated with below 1% physical error rate.
Few tens of qubits can be fabricated on a superconducting
chip. While these parameters are not enough for useful appli-
cations, they are expected to be improved rapidly.

B. Quantum error correction with surface codes

One of the fundamental obstacles to practical quantum
computing is the high error rate of physical qubits. Thus,
we need to protect the quantum information with quantum
error correction (QEC) [3], [30] mechanisms. Surface code
(SC) [6], [30] is one of the most promising QEC codes;
SC can reduce logical errors effectively and be implemented
simply with physical operations on geometrically adjacent

ii

(a) Schematic picture of
surface code (d = 3)

(b) Syndrome lattices
for decoding algorithms

(d) Stacked 2-D syndrome lattices(c) Trivial and non-trivial chains

Data qubit

Ancillary qubit
Errorneous
data qubit
Detected
syndrome

Fig. 1. (a) Schematic picture of surface code (d = 3). (b) Syndrome lattices
generated from surface codes. (c) Examples of trivial and non-trivial chains
of errors. (d) Stacked 2-D syndrome lattices.

qubits located on a two-dimensional grid. SC consists of two
types of physical qubits, data qubits and ancillary qubits. Data
qubits are used to represent a logical qubit. Ancillary qubits are
utilized to check the parity of errors on the neighboring data
qubits. This parity check is called a stabilizer measurement,
and its binary outcome is called a syndrome value.

To deal with both bit-flip (Pauli-X) and phase-flip (Pauli-
Z) errors, QEC needs two types of stabilizer measurement,
i.e., X- and Z-stabilizer measurements. X- and Z-stabilizer
measurements can detect the Pauli-Z and -X errors on the
neighboring data qubits, respectively. Note that Pauli-Y errors
are considered to be a combination of bit- and phase-flip
errors because the Pauli operators X , Y , and Z have the
following relationship: Y = iXZ. Fig. 1 (a) shows a schematic
picture of the SC with code distance d = 3. Here, data qubits
and ancillary qubits for X-(Z-) stabilizer measurements are
represented as circles and blue (red) squares, respectively. X-
(Z-)stabilizer measurements detect Pauli-Z(-X) errors when
the corresponding parity of the neighboring qubits is odd.

If we assume a noise model where Pauli errors occur on
data qubits probabilistically, the estimation of the most likely
Pauli errors can be obtained by the following minimum-
weight perfect matching (MWPM) problem [7]. Suppose a
2-D grid graph where its nodes and edges correspond to
the syndrome values and the data qubits, respectively. An
example is shown in Fig. 1 (b), where erroneous data qubits
are represented as red edges, and detected syndromes are
represented as nodes with red rims. The two lattices for X-
and Z-stabilizer measurements have two distinct boundaries,
which are called smooth and rough boundaries, respectively.
We construct a weighted complete graph where its nodes
correspond to the detected syndromes or boundaries, and the
weights of its edges are determined from the noise model.
We find a minimum weight perfect matching of the complete
graph, and the estimated errors are represented as edges
between each pair of syndromes of the matching. Whether the
estimation of errors is successful or not is determined by the
properties of the occurred and estimated errors. If we estimate
errors as a perfect matching, the resultant error chain consists
of topologically trivial and non-trivial chains, as shown in

MZ

Step1: Initial state Step2: Preparation

Step3: Merge Step4: Split
MZ

Fig. 2. Process of logical Pauli-XX measurements with lattice surgery.

Fig. 1 (c). The odd number of non-trivial chains indicates the
failure of error estimation. Even when ancillary qubits also
suffer from noise, we can reliably estimate errors by extending
the task to a 3-D lattice, i.e., by considering a stacked 2-D
snapshot as shown in Fig. 1 (d). A procedure to generate a
2-D snapshot is called a code cycle. Since the time of the
code cycle must be much shorter than the coherence time,
a practical decoding algorithm must be capable of decoding
these sequentially captured 2-D snapshots. See [7] for the
detail of this formalism.

C. Lattice surgery and gate teleportation with magic states

During the computation, we need to perform a universal set
of logical gates, Hadamard, CNOT, and T -gates, on logical
qubits. The implementation of logical Hadamard gates is
straightforward. On the other hand, the implementation of
logical CNOT and T -gates only with neighboring physical op-
erations is not trivial. These two logical gates can be efficiently
implemented with the techniques of lattice surgery (LS) and
gate teleportation with magic states, respectively [11], [31].
LS provides a way to implement logical Pauli measurements
on multiple logical qubits via the following merge-and-split
operations. Note that logical CNOT operations can be achieved
through multiple-qubit logical Pauli measurements and feed-
back of logical Pauli operations. The minimum example of
the LS, a logical Pauli-XX measurement on two logical
qubits, is shown in Fig. 2. In this figure, 1) we initialize
all the sandwiched physical qubits to physical |0〉 states, 2)
two surface codes are merged by performing another set of
stabilizer measurements and repeating them for d code cycles,
and 3) split it into two planes by performing the original stabi-
lizer measurements and measure all the sandwiched physical
qubits on Pauli-Z basis. These operations are known to be
equivalent to a logical Pauli-XX measurement on the two
logical qubits. The outcome of the logical Pauli measurement
is calculated from the parity of the outcomes of Pauli-X
stabilizer measurements in the first cycle of LS. Since this
procedure merges two rough boundaries, this operation is
called rough merge. The Pauli-ZZ measurement can also be
achieved in a similar way by merging smooth boundaries.
During the merge-and-split operations for rough boundaries,
we obtain a stacked 2-D lattice to be decoded, as shown in
Fig. 3 (a). This figure shows rough and smooth boundaries of

iii

Split

Merge

Prepare

(a) Syndrome lattice of lattice surgery (b) Syndrome lattices of 8-qubit merge

Fig. 3. Rough and smooth boundaries of syndrome lattices.

stacked syndrome lattices as red and blue faces, respectively.
As in the case of Fig. 1 (b), a Pauli error connecting a boundary
to another distinct one with the same color is undetectable with
stabilizer measurements and modifies the logical states or flips
the result of the logical measurement. We keep d code cycles
during the merge phase since the distance between two U-
shaped red boundaries corresponds to the code cycles during
the merge.

As for the logical T -gate, the operation is indirectly per-
formed with the gate-teleportation technique by consuming a
logical qubit prepared in the state |A〉 = (|0〉+eiπ/4 |1〉)/

√
2,

which is called the magic state [32]. While the direct prepa-
ration of high-fidelity |A〉 in the logical space is difficult, we
can construct a clean magic state from several noisy magic
states. This procedure is called magic-state distillation [32]
and is expected to occupy a dominant part of the whole
FTQC [22], [23]. A typical distillation process known as
15-to-1 magic-state distillation [32] requires the space of 24
surface-code patches and five repetitions of eight-qubit logical
Pauli measurements to prepare a clean magic state, which
is consumed in each application of a T -gate. An example
of the stacked 2-D lattices for an eight-qubit logical Pauli
measurement is shown in Fig. 3 (b). Since we need to consider
several rough and smooth boundaries in a multi-qubit merge,
each distinct rough and smooth boundary is rendered with
different colors in the upper and lower figures, respectively.
The blue cylinders filled between the boundaries correspond to
the edges of stacked syndrome lattices explained in Fig. 1 (d).
Thus, the implementation of the decoding algorithms should
be capable of processing the decoding tasks for eight-qubit
LS.

D. Single Flux Quantum logic

A single flux quantum (SFQ) logic is a digital circuit
composed of superconductor devices. Information processing
in SFQ circuits is performed with magnetic flux quanta stored
in superconductor rings with Josephson junctions (JJs). In SFQ
circuits, logical ‘1’ and ‘0’ are represented by the presence
or absence of a single magnetic flux quantum (Φ0 = 2.068×
10−15 Wb). JJs act as switching devices like transistors in ordi-
nary CMOS circuits. An impulse-shaped voltage pulse, called

an SFQ pulse, is generated only when an SFQ travels across a
JJ. Several researchers have designed SFQ-based microproces-
sors and demonstrated ultra-high-speed, low-power operations
with them [33]–[38]. Some researchers have demonstrated
an 8-bit microprocessor composed of more than 10,000 JJs
which operates at 50 GHz [36] and a gate-level-pipelined,
bit-parallel multiplier that operates at up to 48 GHz and
consume 5.6 mW [39], [40]. Since SFQ circuits consist of
superconductor devices, they work only in a cryogenic envi-
ronment around 4 kelvin. Because of this constraint, finding
appropriate applications for SFQ is not a trivial task. Research
on quantum computers is ongoing, and solid-state qubits based
on superconductor devices are considered to be promising for
quantum computers that operate in a cryogenic environment.
In this study, we apply SFQ circuits to quantum computers,
especially for rapid and efficient QEC.

III. RELATED WORK

Since the performance and efficiency of a decoding process
determine the achievable code distance in FTQC, huge efforts
have been aimed at reducing its latency. The most popular so-
lution is to solve the MWPM problem with a polynomial-time
algorithm, that is, Edmonds’ blossom algorithm [41]. Besides
that, renormalization group decoders [42], machine-learning-
based decoders [17], and union-find (UF) decoders [19] were
proposed as potentially fast and near-optimal candidates. Most
of these proposals were tested as software solutions, and
practical implementation is not considered. Since the cycle
of stabilizer measurements is expected to be about 1 µs [20],
[23], the implementation of low latency decoding is critical
for the demonstration of QCs.

There have been proposed several practical SC decoders.
Table I summarizes a qualitative comparison between QU-
LATIS and these decoders. An architecture based on a UF-
based decoding algorithm [18] was recently proposed; they
attracted much attention because of their accuracy and simplic-
ity. Das et al. [18] stated that fully pipelined hardware helps
speed up the decoding process. Cryogenic computing, such
as SFQ or Cryo-CMOS, has actively been studied to design
peripherals of QC controllers [9], [20], [43]. Holmes et al. [20]
proposed an algorithm named AQEC where they devised a
power-efficient and high-speed SFQ-based decoder for SC.
Their implementation consists of multiple units corresponding
to each data and ancillary qubit of an SC logical qubit
to detect and correct errors by propagating simple signals
between the units with a distributed processing scheme. Their
implementation is capable of correcting Pauli errors on the
data qubits. In 2021, we proposed the QECOOL algorithm,
which is an extension of AQEC to deal with measurement
errors of ancillary qubits [21]. We implemented an SFQ-based
decoder which achieves lower power consumption than AQEC.
To cope with the measurement error, we also proposed the
concept of online-QEC, where the stabilizer measurements and
decoding processes are performed simultaneously, in contrast
to the conventional batch-QEC, where the decoding process is

iv

TABLE I
QUALITATIVE COMPARISON AMONG THIS WORK AND OTHER APPROACHES

MWPM
[7], [31], [41]

UF
[18], [19]

AQEC
[20]

QECOOL
[21]

QULATIS
(This work)

Impleme-
ntation Software Software

FPGA [18] SFQ SFQ SFQ

Cryogenic
environment X X X

Measurement
error X X X X

Online
decoding X X

Lattice
surgery X [13]

(X)
(Software)1) X

done after all the measuring processes. We stated that online-
QEC is preferred for realistic QEC in the previous paper [21].

Though these implementations are effective, all of them
focus only on the QEC of a single logical qubit and do not
support any logical operation. It is necessary to study whether
a decoding algorithm that can support a set of universal
logical gates can be implemented efficiently. In this paper, we
develop a new algorithm capable of processing LS operations
and construct an online-QEC architecture with it. We also
show that our architecture can process the merge-and-split
operations required in the magic-state distillation protocols
with reasonable latency and power consumption.

It should be noted that a universal FTQC can also be
achieved with other strategies than LS. For example, virtual-
ized logical qubit, which is a brand-new superconducting qubit
architecture [12], enables transversal logical-CNOT gates by
achieving 2.5-D architecture using multi-mode cavities [44].
Note that these approaches do not conflict with our proposal,
and they are expected to be even efficient when combined.

IV. SPIKE BASED ONLINE DECODING ALGORITHM

A. Base decoding algorithm

We first describe how to decode an SC lattice of a single
logical qubit with measurement errors with the QULATIS al-
gorithm based on QECOOL [21]. This algorithm finds another
hot syndrome closest to a given hot syndrome by propagating
signals between distributed decoding units.

We introduce a decoding unit named the united line module
(ULM). It is associated with each horizontal or vertical line of
ancilla qubits in an SC lattice, while the Units of QECOOL
and the ancilla qubits are in one-to-one correspondence. For
Z-error (X-error) correction, each ULM is vertically (hor-
izontally) connected to 1 or 2 neighboring ULMs forming
a columnwise (rowwise) ULM set and has a queue-like
memory module (Mem) to store a 2-D array of ancilla qubit
measurement values. Figure 4 shows the mapping of an X-
stabilizer lattice to vertically aligned ULMs. We define a
Controller module to orchestrate all the ULMs corresponding
to a syndrome lattice of a logical qubit.

The QULATIS algorithm is shown in Algorithm 1. In
the algorithm, MeasureEachUnit and RestartUnit correspond
to the measurement phase and decoding phase, respectively.

1)Although we expect LS is implementable by modifying the UF algo-
rithm, no implementation has been proposed so far.

Algorithm 1 QULATIS: Spike-based online QEC
for 3-D Surface code
1: Controller:
2: start loop:
3: for C = 1 to Nlimit do
4: for b = 0 to Ndepth do
5: resetFlag()
6: shift = true
7: for i = 0 to NULM do
8: if m− b > thv then
9: giveToken(i)

10: for x = 0 to Nmem do
11: RestartUnit(b, x)
12: end for
13: while !getFinish()&&!Timeout()
14: end if
15: ULM(i).FlagToken = 1
16: shift& = !isAllZero(
17: ULM(i).Mem[0][:])
18: end for
19: if shift then
20: SHIFTMEM()
21: goto start loop
22: end if
23: end for
24: end for

1: procedure SPIKE(flag)
2: if flag == 1 then
3: sendSpikeSouth();
4: else
5: sendSpikeNorth();
6: end if
7: end procedure

1: procedure SHIFTMEM
2: if m > 0 then
3: for i = 0 to Ndepth − 1 do
4: Mem[i]=Mem[i+1]
5: end for
6: m = m− 1
7: end if
8: end procedure

1: procedure CHECKMEM(b, ∆)
2: for δt = 0 to ∆ do
3: δx = ∆ − δt
4: if x+ δx == Nmem

5: or x− δx == −1
6: or b+ δt == m then
7: Return BoundaryFlag
8: else
9: t′ = b+ δt

10: if mem[t′][x+ δx] == 1 then
11: x′ = x+ δx
12: Return x′
13: else
14: if mem[t′][x− δx] == 1 then
15: x′ = x− δx
16: Return x′
17: end if
18: end if
19: end if
20: end for
21: end procedure

1: RestartUnit(Input: b, x)
2: if Token == 1 then
3: if Mem[b][x] == 1 then
4: requestSpike(b, x)
5: ∆ = 0
6: while true do
7: if (S = getSpike()) != NULL then
8: Dir = rotate(S)
9: correctVertical(Dir, x)

10: sendAcknowledge(Dir)
11: Mem[b][x] = 0
12: end if
13: if (x′ = CHECKMEM(b,∆))
14: != NULL && ∆ > 0 then
15: correctHorizontal(x, x′)
16: Mem[b][x] = 0
17: Mem[t′][x′] = 0
18: sendController(“Finish”)
19: end if
20: ∆+ = 1
21: end while
22: else
23: sendController(“Finish”)
24: end if
25: else
26: ∆ = 0
27: while true do
28: if (x′ = CHECKMEM(b,∆))
29: != NULL then
30: SPIKE(FlagToken)
31: if getCorrect() then
32: mem[t′][x′] = 0
33: correctHorizontal(x, x′)
34: sendController(“Finish”)
35: end if
36: else
37: if (S = getSpike()) != NULL then
38: Dir = rotate(S)
39: SPIKE(FlagToken)
40: if getCorrect() then
41: correctVertical(Dir, x)
42: sendAcknowledge(Dir)
43: end if
44: end if
45: end if
46: ∆+ = 1
47: end while
48: end if

1: MeasureEachUnit:
2: m = 0
3: while true do
4: A = checkAncilla()
5: for x = 0 to Nmem do
6: if m == 0 then
7: Mem[0][x] = A
8: else
9: Mem[m][x] = Mem[m-1][x] ⊕ A

10: end if
11: end for
12: m = m+ 1
13: Sleep(Mcycle)
14: end while

Figure 5 (b) and (c) also show the flowcharts of Controller
and RestartUnit, respectively.

Whenever each ancilla qubit is measured, its value (0 and
1 indicate trivial and hot, respectively) is pushed into the
appropriate location in Mem[t][x] of the associated ULM
(MeasureEachUnit in Algorithm 1). For example, as shown in
Fig. 4, the top-left ancilla qubit illustrated as a blue inverted
triangle located on the top-left corner under the lattice is as-
sociated with ULM0, and its first measurement value is stored
in Mem[0][0] of ULM0. Similarly, the second measurement

v

ULM Z0 Mem

ULM Z1 Mem

ULM Z2 Mem

ULM Z3 Mem

ULM Z4 Mem

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0

 Trivial syndrome Hot syndrome Data qubit error Meas. error

M
ea

s.
 s

te
p

in
de

x
(t)

Memory index (x)

UL
M

 in
de

x

x

t

X-stabilizer lattice ULMs for Z-errorMap to ULMs

Fig. 4. Mapping an X-stabilizer lattice (left side) to ULMs (right side).

value of the bottom-right ancilla qubit is stored in Mem[1][3]
of ULM4. When the values of Mem[0][:] (corresponding to
the oldest measurements) of all the ULMs become 0, which
means that no more decoding processes are required for the
bottom layer of the lattice, each Mem is shifted by 1-bit (L.16
to 20 of Controller procedure and ShiftMem procedure in
Algorithm 1).

In the decoding phase, our algorithm proceeds as follows.
First, the algorithm determines the root hot syndrome, which
is the starting point for finding a hot syndrome pair. Next,
another hot syndrome is found by using two types of signals
named Spike and Acknowledge between each ULM. Finally,
the algorithm clears the paired hot syndromes, corrects the
physical qubits between the hot syndromes, and searches the
next root hot syndrome. These are visualized in Fig. 5 (a), and
the details of each process are as follows.

(1) Determining the root hot syndrome: The Controller
assigns Token to each ULM from the top (North), and a ULM
with Token checks its own Mem[b][x] cycle-by-cycle, where
x and b indicate the ancilla qubit position index and the base
depth of the matching search, respectively (Steps 1 and 2 in
Fig. 5 (a)). If the Mem[b][x] is 1, the corresponding syndrome
value and its owner become the root hot syndrome and the
root ULM, respectively.

(2) Spike signal propagation: The root ULM requests all
the other ULMs to send a Spike signal toward itself. The
ULMs, including the root, perform a cycle-by-cycle search for
nearest ‘1’ in Mem by using memory indices of b and x as a
query point as follows (Steps 3 and 4 in the figure). First, the
ULM checks Mem[b][x]. If it is not ‘1’, in the next cycle, the
ULM simultaneously references the elements of Mem whose
Hamming distance is 1 from the query (e.g., Mem[b][x+ 1],
Mem[b][x − 1] and Mem[b + 1][x]). The above procedure
is repeated cycle-by-cycle, increasing the Hamming distance
until the ULM finds ‘1’ or gets a Spike signal from other
ULM or receives a TimeOut signal. After finding Mem[t′][x′]
with value ‘1’ or getting a Spike signal, the non-root ULM
sends a Spike signal. The Spike direction is determined by
the FlagToken indicating whether the Token has already been
passed (see SPIKE procedure in Algorithm 1). The source of
the Spike signal that first arrives at the root ULM is called the

target ULM. If the root ULM finds Mem[t′][x′] with value ‘1’
before getting a Spike or a Timeout, the propagation of Spike
and Acknowledge signals is skipped, and the physical qubits
are corrected while the root ULM also acts as the target ULM.

(3) Acknowledge signal propagation: If the first Spike
comes to the root ULM, it sends an Acknowledge signal in the
direction that the Spike came from (Step 5 in the figure). The
Acknowledge signal is passed toward the target ULM. These
two types of signals form a request-grant mechanism, which
prevents more than two hot syndromes from being matched
simultaneously.

(4) Correcting physical qubits: Each ULM that sends
an Acknowledge signal corrects the x-th data qubit that
is sandwiched between itself and the ULM to which the
Acknowledge signal is sent (correctVertical(Dir, x)). The
root ULM also clears the value of Mem[b][x] while sending
Acknowledge signal. After getting an Acknowledge signal, the
target ULM clears the value of Mem[t′][x′] and corrects the
horizontally aligned data qubits that are between x and x′

(CorrectHorizontal(x, x′)).
If an error syndrome from one of the ULMs in the SC goes

toward the outside, there is no proper matching pair among
erroneous ancilla qubits. To deal with such a case, we use
“out-of-bounds array access” of the root ULM in process 2)
for boundary matching. If Mem[t][x] is the root hot syndrome,
the root ULM attempts to check Mem[t][−1] (Mem[t][Nmem])
at the (x+1)-th ((Nmem−x)-th) cycle if no Spike or TimeOut
signals come before that (L.4 to 9 of CheckMem procedure in
Algorithm 1). We consider this case to be left-boundary (right-
boundary) matching, and the root ULM corrects all data qubits
to the left (right) of x2). Boundaries are flexibly controlled by
the contents of Mem, and this flexible boundary matching is
the main difference between our algorithm and the previous
decoders such as QECOOL [21] and AQEC [20]. This allows
QULATIS to cope with LS processing as described in the next
subsection.

This algorithm finds the closest hot syndrome to the root
hot syndrome. However, it does not necessarily find a set of
pairs that globally minimizes the total distance because the
root hot syndrome is sequentially determined. To increase the
possibility to find the global minimum, we limit the maximum
number of hops to propagate a Spike in a single run of the
above processes and increase it iteratively. The Controller
procedure in Algorithm 1 implements this by setting a Timeout
after restarting the ULMs. As a result, the QULATIS algorithm
finds a matching similar to the greedy matching shown in
Fig. 1. of Reference [45], and its performance is lower than
that of the MWPM decoder.

As with the QECOOL algorithm, our QULATIS algorithm
controls the online QEC process with the parameter thv ,
which means the maximum length or threshold in the vertical
direction to search for a pair of hot syndromes.

2)To prioritize matching between hot syndromes, the timing for determin-
ing boundary matching needs to be adjusted in the implementation.

vi

ULM Z0 Mem

ULM Z1 Mem

ULM Z2 Mem

ULM Z3 Mem

ULM Z4 Mem

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0

ULM Z0 Mem

ULM Z1 Mem

ULM Z2 Mem

ULM Z3 Mem

ULM Z4 Mem

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0

ULM Z0 Mem

ULM Z1 Mem

ULM Z2 Mem

ULM Z3 Mem

ULM Z4 Mem

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0

ULM Z0 Mem

ULM Z1 Mem

ULM Z2 Mem

ULM Z3 Mem

ULM Z4 Mem

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0

b = 0, x = 0 b = 0, x = 1 b = 0, x = 1

x’ = 0

x’ = 2

b = 0, x = 1
Step 1 Step 2 Step 3

Step 5

ULM Z0 Mem

ULM Z1 Mem

ULM Z2 Mem

ULM Z3 Mem

ULM Z4 Mem

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0

b = 0, x = 1

x’ = 0

x’ = 2

Step 4
 Paired synd. Correction Token Spike signal Ack. signal

Error correction result

(a) Controller

C = 1;

b = 0;

i = 0;

RestartUnit
(b, x);

i+=1;

b+=1;

C+=1;

Shift
register;

Yes

Yes

Yes

Wait
meas.

process

No

No

No

x+=1;
Wait request

reset OR
C cycles

Yes No

RestartUnit (b, x)

requestSpike
(b, x);

Wait for
requestSpike

Δ = 0;

Get
Spike?

Δ += 1;

Send Spike;

Wait for
Ack.

Send Spike;

Wait for
Ack.

Correct qubit;
Request reset;

Δ = 0;

Correct qubit;
Request reset;

Δ += 1;

Correct qubit;
Send Ack.;

Request
reset;

Correct qubit;
Send Ack.;

YesNo No

No

Yes

No

Yes

Yes

No

No

Yes

(b)

(c)

Yes

Yes

Δ>0 &&

 is
NULL?

checkMem(b, Δ)
Get

?
Spike

 is
 NULL?

checkMem(b, Δ)

C<Nlimit?

b<Ndepth?

m-b > thv?

i<Nunit?

x<Nmem?

Bottom layer
is corrected?

Reset Token;
Give Token to i-th Unit;

x = 0;

No

Yes

Controller end

No

mem[b][x]
is 1?

Have
Token?

Fig. 5. (a) QULATIS process for error correction of single logical qubit. (b) Flowchart of Controller procedure. (c) Flowchart of RestartUnit procedure.

Copy

ULM ZL0 Mem

ULM ZLd-1 Mem

...

ULM ZR0 Mem

ULM ZRd-1 Mem

...

0 0
0 0
0 1

0 0
0 0
1 0

ULM ZL0 Mem

ULM ZLd-1 Mem

ULM ZR0 Mem

ULM ZRd-1 Mem
... ...

0 0
0 0
1 0

0 0 0 0 0
0 0 0 0 0
0 1 0 1 0

U
LM

 X
L 0

M
em ...

U
LM

 X
L d

-1
M

em

U
LM

 X
R

0
M

em ...

U
LM

 X
R

d-
1

M
em

U
LM

 X
L 0

M
em ...

U
LM

 X
L d

-1
M

em

U
LM

 X
R

0
M

em ...

U
LM

 X
R

d-
1

M
em

(a) X-stabilizer lattice Merge

(b) Z-stabilizer lattice Merge

Fig. 6. The merge operation for X- and Z-stabilizer lattices with ULMs.

B. QULATIS for merge and split operations

Here, we describe how to use the QULATIS algorithm to
perform the merge-and-split operations of the LS process. We
consider the same situation as in Fig. 2, where two adjacent
logical qubits are to be merged. Note that the previously pro-
posed hardware decoders are not applicable to this operation
because of their hardware limitation.

Figure 6 illustrates an overview of the merge operation for
X- and Z-stabilizer lattices with ULMs, and Table II shows
the parameters in Algorithm 1 that have different values for
single logical qubit decoding and merge operation. The merge
operation is realized on the QULATIS by setting the contents
of each Mem appropriately, or by connecting two pairs of
ULMs in series, and then executing Algorithm 1 with the

parameters changed as Table II.
(a) X-stabilizer lattice: Before the merge operation, two

sets of vertically aligned ULMs are responsible for Z-error
correction of the left and right logical qubits, respectively. The
merge operation is performed by copying the memory contents
of the right ULMs to the corresponding left ULMs and
operating the left set of ULMs as described in Algorithm 1.
In other words, the ULMs treat the merged logical qubits as
a single wide lattice by expanding the range of ancilla qubits
managed by a single ULM. Note that additional ancilla qubits
are placed between the logical qubits in a merge operation to
connect their rough boundaries. The measurement values of
the new ancilla qubits must be stored in the memory of the
appropriate ULM. Therefore, the value of Nmem is doubled
and added by one compared to the case of a single logical
qubit.

(b) Z-stabilizer lattice: Two sets of ULMs arranged in a
row correct an X-error on the left and right logical qubits
before merge operation. A merge operation of the Z-stabilizer
lattice can be achieved simply by connecting two sets of
ULMs in series. Therefore, NULM has a value twice the
code distance d. There are no additional ancilla qubits for
Z-stabilizer measurements between the logical qubits, unlike
the case of X-stabilizer, and Nmem has the same value as in
the case of a single logical qubit.

V. QULATIS ARCHITECTURE FOR LATTICE SURGERY

In this section, we describe in detail our FTQC architecture
supporting LS with the QULATIS algorithm for a 2-D grid
of physical qubits with a 3-D SC decoding capability. First,
we give an overview of our FTQC architecture. Second, we

vii

TABLE II
PARAMETERS IN ALGORITHM 1 FOR CODE DISTANCE d

Single logical qubit Merge operation
(X-stabilizer lattice)

Merge operation
(Z-stabilizer lattice)

Nmem d− 1 2(d− 1) + 1 d− 1
NULM d d 2d

...

... ...

For Z-error

For X-error

ULM Z0

ULM Zd-1

...

...
U

LM
 X

0

U
LM

 X
d-

1

Fig. 7. Overview of our FTQC architecture with QULATIS and ULMs.

describe the detailed functions and design of the key building
block of the architecture referred to as ULM. Finally, we
implement it using SFQ digital circuits and evaluate its circuit
characteristics.

A. Overview of the FTQC Architecture based on QULATIS

Figure 7 shows the overview of the proposed FTQC ar-
chitecture based on the QULATIS algorithm. Our architecture
consists of a 2-D grid of physical qubits, pairs of decoding
units (ULMs), and a controller to orchestrate the ULMs. The
detailed functionalities and design of the ULM are described
in the following subsections. The array of physical qubits is
divided into several logical qubits coordinated by SC with a
predetermined code distance d with appropriate spacing. Each
logical qubit has two sets of ULMs for X- and Z-error.

This architecture can perform not only an error correction
of a single logical qubit but also a merge operation between
logical qubits. While no merge operation is performed, the sets
of ULMs operate independently in parallel; each is responsible
for the error correction of the corresponding logical qubit.
During a merge operation, the two sets of ULMs for logical
qubits corresponding to the merge operation act cooperatively
by copying memory contents from one to another or connect-
ing two sets of ULMs in a series as described in Section IV-B.
The other ULMs operate independently as usual.

The QULATIS architecture also supports Pauli measurement
operations on more than three logical qubits by cooperating
corresponding ULMs, as in the case of the merge operation
of two logical qubits. For example, in the case of merging
logical qubits No. 0 to No. 3 in Fig. 7, the process of Z-error
correction can be realized by copying the memory contents
from LQ1 to LQ0 and LQ3 to LQ2 and by connecting the
ULM of LQ0 and LQ2 in a series.

Controller

Restart
Push
Pop
BaseInc

To
each
ULM

MeasIn
Push
Pop

BaseInc

Restart

SpikeIn

AckIn

TokenIn

Memory
module

HoldToken

HotPos

Dir

Flag
Token

State
machine

Query HotFind Correct
Qubits

Ack
Out

Spike
Out
Token
Out

Architecture of ULMs

0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0

Memory module function

Base: 0 Base: 0Base: 0 Base: 0

... HotFind

HotPos: 3

Qubit pos (x)

M
ea

s.
 s

te
p

 in
de

x
(t)

μ-arch of ULM

Query: 1 Next
cycle

Next
cycle

Code
distance

d

ULM Z0

ULM Zd-1

...

Fig. 8. Overview of the architecture of ULM and memory module function.

B. Microarchitecture of ULM

Figure 8 illustrates an overview of the hardware architecture
of ULMs for detecting and correcting Z-errors for a single
logical qubit. The ULMs are arranged in a column, and
the SC boundaries are placed on the left and right sides of
the ULMs. A single ULM manages a row of data qubits
connected horizontally through the X-stabilizer, while data
qubits connected vertically are managed by multiple ULMs.
Note that in the hardware architecture for X-error correction,
the ULMs’ hardware blocks shown in Fig. 8 are rotated 90
degrees and arranged in a row.

There is one Controller in each group of ULMs for X- or
Z-error correction for a logical qubit. It orchestrates the cor-
responding ULMs by passing them the Token and distributing
the control signals. Whenever the ancilla bits are measured,
the Controller sends the Push signal to all ULMs to store the
measured values in their memory modules. If there are enough
valid syndrome data in the memory module, the Controller
starts the decoding process by sending Restart signal to all the
ULMs. During the decoding phase, when the Token returns
from the ULM to the Controller and the error correction
process for the current layer has been completed, it sends a Pop
signal to the ULMs to shift the memory contents; otherwise,
it broadcasts the BaseInc signal to start the decoding process
in one layer above the current layer.

The previous studies [20], [21], [46] used hardware mod-
ules, named “boundary module” or “boundary unit” to pair a
hot syndrome with boundaries, and the modules cannot handle
dynamic boundary changes required for LS procedures. On
the other hand, a boundary is flexibly controlled in QULATIS
by storing syndrome values of an SC patch into the memory
appropriately, enabling the proposed circuit to merge and split
logical qubits.

Each ULM is composed of the five components as below.
(1) State machine: The state machine controls the behavior

of the ULM. The state transition is based on reset signals from
the Controller, the Token, Spike signals from other ULMs, and
referenced memory values.

(2) Memory module: This module has a two-dimensional
memory that holds a time series of measurement values of

viii

each ancilla qubit managed by the ULM. This module per-
forms a cycle-by-cycle minimum Manhattan-distance search
by reading the memory location spreading from the point-of-
interest (query point) to around. If the memory value of ‘1’ is
found, a signal named “FindHot” is sent to the state machine,
telling it to proceed with the matching process. It also sends
information of the position of the corresponding ancilla qubit
to the Qubit correction module to specify the data qubit for
error correction. The query point is determined by a “Query”
signal from the state machine that points to the position of an
ancilla qubit and a “Base” register that indicates the starting
layer of the lattice for matching.

(3) Spike out module: This module sends a Spike to another
ULM, and its direction is determined by a 1-bit flag named
“FlagToken”.

(4) Acknowledge out module: This module sends an
Acknowledge signal to one of adjacent ULMs from which
it received the most recent Spike signal.

(5) Qubit correction module: This module corrects data
qubits against observed errors. To correct appropriate qubits,
it has a buffer to hold the position of the qubit to be corrected.
The size of the buffer depends on the code distance d of the
QEC architecture. It can generate two types of qubit correction
signal, “CorrectHorizontal” and “CorrectVertical” to correct
data qubits connected horizontally via the stabilizer and data
qubits between two ULMs, respectively.

C. ULM implementation based on RSFQ logic

We designed the ULM hardware for d = 9 SC decoding
except the memory module using the existing, well-developed
cell library [47]. The library is with a conventional logic family
of rapid single flux quantum (RSFQ) targeting a niobium
nine-layer, 1.0-µm fabrication technology [48], [49] for 4-
K temperature operation. The memory module is assumed
to be a 64-kb hybrid Josephson-CMOS memory array pro-
posed by Van Duzer et al. [50]. Its readout delay and power
consumption at 1 GHz operation frequency are 400 ps and
13 mW, respectively. As we explain later, this memory device
is sufficient for a memory module of QULATIS architecture.

Table III summarizes the SFQ logic gates used in this
work. A JJ in an SFQ circuit is the basic switching element
like a transistor in traditional circuits, and they are the main
determinant of the power consumption and hardware cost.
The table shows the number of JJs for each gate and the
assumed bias current required for operation when the designed
supply voltage is 2.5 mV. In RSFQ, since most of the power
is consumed statically, almost independently of switching
activity, it is calculated by multiplying the bias voltage and
currents.

We used the Josephson simulator (JSIM) [51], which is
a SPICE-level simulator, to verify the functionality of the
designed ULM except for the memory module. Table IV shows
the total number of JJs, total area, total bias current, and
latency of each submodule of the ULM. Figure 9 shows the
layout of our design. The designed circuit consists of 2412 JJs
in total, and its area footprint is 0.8892 mm2.

TABLE III
SUMMARY OF SFQ LOGIC ELEMENTS

cell JJs Bias current
(mA)

Area
(µm2)

Latency
(ps)

splitter 3 0.300 900 4.3
merger 7 0.880 900 8.2
1:2 switch 33 3.464 8100 10.5
destructive readout (DRO) 7 0.689 1800 5.4
resettable DRO (RD) 11 0.901 900 6.0
dual-output DRO (D2) 12 0.943 900 6.5
XOR 11 1.068 3600 6.5

Fig. 9. Layout of the part of ULM designed based on RSFQ logic.

The latency of the logic part of ULM is 157.5 ps and, it
is overlapped by the memory module readout. Therefore, the
critical path of the entire ULM is the memory access path
whose delay is 400 ps [50], resulting in a theoretical maximum
operating frequency of 2.5 GHz. We pessimistically assume
the proposed architecture operates at 2 GHz in the rest of this
paper.

D. Power estimation with ERSFQ logic

To achieve a lower power decoder, we use the more
energy-efficient technology, called the energy-efficient RSFQ
(ERSFQ) [52], instead of RSFQ logic. In conventional RSFQ,
most power is consumed by bias feed resistors statically. On
the other hand, in ERSFQ, bias resistors are replaced with JJs,
by which we can eliminate the large static power consumption
in exchange for doubled dynamic power consumption by JJs.
Because the JJ’s dynamic energy consumption is roughly
represented by bias-current ×Φ0 per switch, we estimated
the power consumption with ERSFQ based on the RSFQ
design and the power model of ERSFQ [53]. Here, the
power of a ULM with ERSFQ can be estimated as follows:
Punit = (bias current)× (frequency)× Φ0 × 2.

For the designed ULM for d = 9 SC decoding, the total bias
current is 250.7 mA. If we suppose a 2 GHz clock frequency,
the power consumption of a ULM in a 4-K environment is
estimated as follows: 250.7[mA]×2[GHz]×(2.068×10−15)[Wb]×
2 = 2.07[µW]. By combining this circuit with the 64-kb
memory module [50], we can construct a ULM and estimate
the power consumption required for an architecture composed
of ULMs.

ix

TABLE IV
TOTAL NUMBER OF LOGIC ELEMENTS, NUMBER OF JJS, CIRCUIT AREA

AND LATENCY OF EACH MODULE THAT CONSTITUTES THE PART OF THE
ULM BASED ON THE AIST 10-KA/CM2 ADP CELL LIBRARY [47].

cell State
machine

Qubit
Correction
vertical
(d = 9)

Qubit
Correction
horizontal
(d = 9)

Spike
out Other Total

(d = 9)

splitter 39 55 54 2 9 159
merger 12 8 15 3 38
1:2 switch 8 1 1 10
DRO 1 1
RD 8 15 9 2 34
D2 9 8 17
XOR 9 9
Wire 285 396 379 22 50 1132
Total JJs 721 765 778 77 71 2412
Total area
(µm2) 230400 276300 342000 40500 889200

Total bias
current (mA) 74.2 79.2 82.3 7.03 7.94 250.7

Latency (ps) 65.2 83.4 73.3 18.4 157.5

VI. PERFORMANCE EVALUATION

A. Evaluation setup

In this section, we numerically evaluate the performance
of the QULATIS algorithm and its architecture implemen-
tation. We assume a noise model where Pauli-X and -Z
errors occur on each data and ancillary qubit independently
with a uniform physical error probability p. Note that while
the actual noise of qubits would be locally correlated and
coherent, the surface codes are expected to correct these
errors with a modest performance degradation [54], [55].
Thus, this evaluation captures the essential performance of
our proposal. For a given physical error rate, we repetitively
sample the error patterns, simulate the propagation of errors
and decoding procedure, and evaluate the probability of logical
failure. While a full simulation of quantum circuits requires
the time exponentially scaling with the number of qubits, we
can efficiently simulate the propagation of Pauli errors since
we assume Pauli errors and QEC circuits consist of Clifford
gates and Pauli measurements [56].

The latency of the MWPM decoder, which is implemented
with Blossom V library [57], is measured by a PC using a
single core of Intel Xeon Gold 6240R and 96 GB RAM. Note
that the MWPM decoder latency contains only the time for
solving MWPM problems, excluding graph construction. The
latencies of QECOOL and QULATIS are measured by their
total execution cycles multiplied by the clock cycle time of
0.5 ns, assuming 2 GHz clock frequency.

B. Error correction performance for a single logical qubit

First, we show the performance of the QULATIS algorithm
for the idling operations for a single logical qubit during d
code cycles assuming the existence of measurement errors and
compare it with the existing decoding algorithms. To this end,
we compare the batch execution of the QULATIS algorithm
with the existing batch decoding algorithms with a checkmark
in ‘Measurement error’ in Tab. I: MWPM, UF, and QECOOL.

Figure 10 shows the error correction performances of the
four batch decoding algorithms. The threshold behavior is

TABLE V
COMPARISON OF BATCH-QECOOL AND QULATIS FOR THE NUMBER OF
EXECUTION CYCLES PER LAYER DURING ERROR CORRECTION FOR SINGLE

LOGICAL QUBIT.

p = 0.001 p = 0.01
Algorithm d Max. Avg. σ Max. Avg. σ

Batch-
QECOOL

5 105 5.75 4.12 148 12.2 12.8
7 341 10.2 11.9 551 35.0 34.1
9 727 18.3 25.7 1017 80.1 70.1
11 1107 32.2 46.1 2098 154 129

Batch-
QULATIS

5 90 2.54 3.28 112 7.15 10.2
7 111 3.20 4.96 220 12.9 15.5
9 164 4.24 6.93 259 20.9 22.4
11 224 5.70 9.15 367 30.9 31.3

10 3 10 2 10 1

Physical qubit error rate (p)
10 4

10 3

10 2

10 1

100

Lo
gi

ca
l e

rro
r r

at
e

P L

break-even
d=5, QULATIS
d=7, QULATIS
d=9, QULATIS
d=11, QULATIS
d=5, QECOOL
d=7, QECOOL
d=9, QECOOL
d=11, QECOOL

d=5, MWPM
d=7, MWPM
d=9, MWPM
d=11, MWPM
d=5, UF
d=7, UF
d=9, UF
d=11, UF

Fig. 10. Performance comparison of batch-QECOOL, batch-QULATIS, UF
and MWPM for error correction of single logical qubit.

observed for all decoders. The threshold is about 5% for
MWPM, 4% for UF, and 2% for QULATIS and QECOOL
algorithms. Thus, instead of being compatible with online
decoding, the threshold values of the online decoders are twice
as small as those of the MWPM and UF.

Comparing QULATIS with QECOOL, the performance of
the QULATIS is slightly better than QECOOL at d = 5, and
they are almost the same in the other cases. Table V lists
the per-layer execution cycles of QECOOL and QULATIS
for several p and d combinations. The execution cycles are
not shown in the table since the MWPM decoder is not an
online decoder. The per-layer execution cycles of QULATIS
are less than those of QECOOL because of the reduction in
unnecessary Token exchanges (L.9 of Controller procedure in
Algorithm 1). This trend is prominent for larger d.

The trade-off between the accuracy and latency for decoding
a single logical qubit is shown in Fig. 11 (a). Note that
QECOOL and QULATIS are executed with batch-manner for
a fair comparison with MWPM, which cannot work in an
online manner. The physical error rate p is assumed to be
0.001, and the target latency is set to d µs, which is required
for online decoding. While QULATIS has the lowest latency,
even MWPM can decode a single logical qubit with enough
lower latency than the target latency since the assumed p is
fairly small. In addition, there is no significant difference in
the accuracy for different decoders.

x

d=5 d=7 d=9 d=110.9
6

0.9
8

1.0
0

Ac
cu

ra
cy

(a) Single logical qubit

QULATIS acc.
QECOOL acc.
MWPM acc.

MWPM latency
QECOOL latency

QULATIS latency
Target latency

d=5 d=7 d=9 d=110.9
6

0.9
8

1.0
0

Ac
cu

ra
cy

(b) Two qubits merge-and-split

10
2

10
0

10
2

10
4

La
te

nc
y

(
s)

10
2

10
0

10
2

10
4

La
te

nc
y

(
s)

Fig. 11. Trade-off between accuracy and latency for decoding (a) single
logical qubit, and (b) two qubits merge-and-split operations. Physical error
rate p is assumed to be 0.001, and all the algorithm are executed with batch-
manner.

C. Error correction performance for merge-and-split opera-
tions of two logical qubits

Next, we evaluate the error correction performance of
the QULATIS algorithm for merge-and-split operations on
two logical qubits described in Fig. 2. We performed the
benchmark on the 3d-cycle merge-and-split operations that
consist of d-cycle split phase, d-cycle merge phase, and d-
cycle split phase. To the best of our knowledge, no imple-
mentation of the online decoder that is compatible with LS
operations has been known. Thus, we compare the perfor-
mances of online-QULATIS algorithms with two decoders,
the MWPM and batch-QULATIS decoders, for evaluating the
performance penalty of the online execution. Note that since
the QECOOL3)and UF do not support LS, no performance
comparisons with them are provided in the following parts.

Figure 12 shows the error rate scaling for the QULATIS
and MWPM. The MWPM and batch-QULATIS algorithms
process the decoding lattices after the whole process. On the
other hand, in the evaluation of online-QULATIS, we assume
that the measurement process is performed every 1 µs, and
if the algorithm cannot catch up with the cycle of stabilizer
measurements, the trial is assumed to be a failure. Thus,
the difference between online- and batch-QULATIS represents
the penalty of the online execution. Here, we set thv = 3,
Ndepth = 7, and the operating frequency to 2 GHz, which is
the same as the existing work [21]. According to the figure, the
performance degradation of the online-QULATIS compared
with the batch-QULATIS is negligibly small. We observe the
threshold value around p = 0.6% for the QULATIS and
p = 2% for the MWPM.

Figure 11 (b) shows the trade-off between the accuracy and
the latency for a merge-and-split operation of two logical
qubits. Here, we assume the target latency is 3d µs and p
is 0.001. Note that there are no results of QECOOL because
it does not support that operation. The result shows that the
latency of MWPM is larger than the target latency, even if

3)If the QECOOL decoder is straightforwardly applied to merge-and-split
operations, it cannot handle a hot syndrome at the sandwiched area during
merging. The syndrome will be randomly matched to either the left or right
boundary, causing a logical error with a 50% probability. As a result, physical
errors at the gap vicinity contribute to a constant logical error rate, whereas
the remaining part exhibits a lower logical error rate with increasing code
distance.

10 4 10 3 10 2

Physical qubit error rate (p)
10 4

10 3

10 2

10 1

100

Lo
gi

ca
l e

rro
r r

at
e

P L

break-even
d=5, Batch-QULATIS
d=7, Batch-QULATIS
d=9, Batch-QULATIS
d=11, Batch-QULATIS
d=5, Online-QULATIS
d=7, Online-QULATIS
d=9, Online-QULATIS
d=11, Online-QULATIS
d=5, MWPM
d=7, MWPM
d=9, MWPM
d=11, MWPM

Fig. 12. Logical error rate performance of MWPM, batch- and online-
QULATIS for merge-and-split operations.

the code distance is small. On the other hand, QULATIS runs
fast enough for any code distances. Although the accuracy
of QULATIS is lower than that of MWPW, their difference
becomes very small as the code distance increases. We again
emphasize that the MWPM algorithm is a software decoder
and huge latency due to its batch processing manner is critical
in practice even though it has high accuracy.

D. Error correction performance of online-QULATIS for 15-
to-1 magic-state distillation

Finally, we evaluate the error correction performance of
the online-QULATIS algorithm for magic-state distillation cir-
cuits. As described in Section II-C, the magic-state distillation
circuit consists of five eight-qubit Pauli-X measurements on
16 logical qubits and consumes the space of 24 SC patches,
and this subroutine is expected as one of the largest merge-
and-split operations in the practical FTQC. To reduce the
complexity of the performance evaluation, we numerically cal-
culate the logical error probabilities for each of the five eight-
qubit merge-and-split operations independently and evaluate
the total logical error probability from them.

Figure 13 shows the error correction performance of the
QULATIS algorithm for the magic-state distillation circuit.
The architecture runs at 2 GHz, and the parameters for online-
QEC are set as thv = 3 and Ndepth = 7. The figure shows
that the performance improves as the code distance d increases
up to d = 7. Thus, we can conclude that the online-QULATIS
algorithm can suppress the logical errors according to the code
distance, even for the magic-state distillation circuits. On the
other hand, the dropping rate of the logical error rate according
to the code distance becomes small at d = 9. This is because
the size of the buffer storing the measurement values is too
small for processing. By increasing the buffer size according
to the required logical error rates, the QULATIS algorithm
would work even for long code distances.

Table VI shows the number of execution cycles per layer
of Online-QULATIS for several combinations of coding dis-
tance d and physical error rate p. The parameters for online
processing are set to the same values as above. In this case,

xi

10 4 10 3 10 2

Physical qubit error rate (p)

10 4

10 3

10 2

10 1

100
Lo

gi
ca

l e
rro

r r
at

e
P L

d=3, Online-QULATIS
d=5, Online-QULATIS
d=7, Online-QULATIS
d=9, Online-QULATIS

Fig. 13. Error correction performance of Online-QULATIS for magic-state
distillation circuit.

TABLE VI
PER-LAYER EXECUTION CYCLES OF ONLINE-QULATIS FOR

MAGIC-STATE DISTILLATION CIRCUIT.

p = 0.0001 p = 0.0005 p = 0.001
d Max. Avg. σ Max. Avg. σ Max. Avg. σ

3 318 5.60 18.6 456 20.7 44.5 455 40.4 65.3
5 575 12.7 35.4 777 50.9 81.8 812 93.4 120
7 968 23.5 55.3 1205 83.5 127 1266 145 187
9 1539 37.9 79.4 1689 121 185 1913 212 274

the execution cycles of QULATIS are highly dependent on
d and p, and the latency of QULATIS is suitable for online
processing if the physical error rate p is sufficiently small for
coding distances up to 9.

E. Power consumption and scalability of QULATIS

We estimate the number of protectable logical qubits with
QULATIS architecture in a cryogenic environment in terms
of power consumption. We assume that the code distance,
the operating frequency, and Ndepth are 9, 2 GHz, and 7,
respectively. The contribution of the controllers to the power
consumption becomes relatively small and negligible as d
and the number of logical qubits increases. Each box of
“ULMs” in Fig. 7 has 18 ULMs, and each ULM stores
the measurement values of 8 ancillary qubits. Hence, the
total amount of memory size of ULMs required for an SC
patch is 7[bit/qubit]× 8[qubits/ULM]× 18[ULMs/patch] = 1008[bit/patch].
Assuming that a single 64-kbit memory device [50] can
be shared by 64[kbit]/1008[bit/patch] ≈ 63 patches, the total
power consumption of ULMs required for 63 logical qubits is
2.07[µW/ULM]×18[ULMs/patch]×63[patches]+12[mW/GHz]×2[GHz] ≈
26.3 mW. The power budget of the 4-K temperature region of
a dilution refrigerator is supposed to be 1 W [8]. Thus, we
expect that 1[W]/(26.3/63)[mW/patch] ≈ 2395 logical qubits can
be protected in a cryogenic environment with our architecture,
which is comparable to QECOOL [21].

Next, we estimate the power consumption of the QULATIS
architecture that supports a magic-state distillation circuit.
From the results shown in Fig. 13, we assume that Ndepth
is 16, which is about twice as large as the conventional setup,
and the other setup is the same as above. As shown in Fig. 16.
of Ref. [11], a distillation circuit requires 24 patches of SC.
The total amount of memory size required for the architecture

supporting a distillation circuit is 16[bit/qubit] × 8[qubits/ULM] ×
18[ULMs/patch] × 24[patches] = 55296 bit, which is lower than
64 kbit. Assuming that a single memory device [50] can be
shared by all ULMs in the architecture, the total power con-
sumption of the architecture is 2.07[µW / ULM]×18[ULMs / patch]×
24[patches] + 12[mW/GHz] × 2[GHz] ≈ 25 mW. Thus, we expect
that our architecture supports 1[W]/25[mW/distillation circuit] = 40
magic-state distillation circuits with code distance d = 9 in
such an environment.

VII. CONCLUSION

In this paper, we proposed QULATIS, a decoding algorithm
and an FTQC architecture that supports lattice surgery. We
designed a key building block of the architecture with super-
conducting circuits and evaluated the performance and power
consumption of the circuit. We evaluated the error correction
performance of the proposed architecture for a merge-and-split
operation of two logical qubits and a magic-state distillation
circuit in a quantum error simulator. The results show that
our architecture has sufficient error correction performance to
support the distillation circuit, and it is power-efficient enough
to operate in the 4-K layer of a dilution refrigerator.

ACKNOWLEDGMENT

This work was supported by JST Mirai Program Grant
Number JPMJMI17E1, JST CREST Grant Number JP-
MJCR18K1, JST PRESTO Grant Number JPMJPR1916, JST
ERATO Grant Number JPMJER1601, MEXT Quantum Leap
Flagship Program Grant Numbers JPMXS0120319794, JP-
MXS0118068682, JST Moonshot R&D Grant Number JP-
MJMS2061, and the ANRI fellowship.

REFERENCES

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends,
R. Biswas, S. Boixo, F. Brandao, D. Buell, B. Burkett, Y. Chen,
J. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi,
B. Foxen, A. Fowler, C. M. Gidney, M. Giustina, R. Graff, K. Guerin,
S. Habegger, M. Harrigan, M. Hartmann, A. Ho, M. R. Hoffmann,
T. Huang, T. Humble, S. Isakov, E. Jeffrey, Z. Jiang, D. Kafri,
K. Kechedzhi, J. Kelly, P. Klimov, S. Knysh, A. Korotkov, F. Kostritsa,
D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R.
McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni,
J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby,
A. Petukhov, J. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. Rubin,
D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. Trevithick,
A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman,
H. Neven, and J. Martinis, “Quantum supremacy using a programmable
superconducting processor,” Nature, vol. 574, p. 505–510, 2019.

[2] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y. Wu, Q. Zhu,
Y. Zhao, S. Li, S. Guo, H. Qian, Y. Ye, F. Chen, C. Ying, J. Yu, D. Fan,
D. Wu, H. Su, H. Deng, H. Rong, K. Zhang, S. Cao, J. Lin, Y. Xu,
L. Sun, C. Guo, N. Li, F. Liang, V. M. Bastidas, K. Nemoto, W. J. Munro,
Y.-H. Huo, C.-Y. Lu, C.-Z. Peng, X. Zhu, and J.-W. Pan, “Quantum
walks on a programmable two-dimensional 62-qubit superconducting
processor,” Science, vol. 372, no. 6545, pp. 948–952, 2021.

[3] P. W. Shor, “Scheme for reducing decoherence in quantum computer
memory,” Physical review A, vol. 54, no. 4, p. R2493, 1995.

[4] A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev.
Lett., vol. 77, pp. 793–797, Jul 1996.

[5] A. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of
Physics, vol. 303, no. 1, pp. 2–30, 2003.

[6] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with
boundary,” arXiv preprint quant-ph/9811052, 1998.

xii

[7] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Physical
Review A, vol. 86, no. 3, p. 032324, 2012.

[8] J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu,
A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and
D. J. Reilly, “Cryogenic Control Architecture for Large-Scale Quantum
Computing,” Phys. Rev. Applied, vol. 3, p. 024010, 2015.

[9] S. S. Tannu, Z. A. Myers, P. J. Nair, D. M. Carmean, and M. K.
Qureshi, “Taming the instruction bandwidth of quantum computers via
hardware-managed error correction,” in 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture, 2017, pp. 679–691.

[10] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface code
quantum computing by lattice surgery,” New Journal of Physics, vol. 14,
no. 12, p. 123011, 2012.

[11] A. G. Fowler and C. Gidney, “Low overhead quantum computation using
lattice surgery,” arXiv preprint arXiv:1808.06709, 2018.

[12] C. Duckering, J. M. Baker, D. I. Schuster, and F. T. Chong, “Virtualized
Logical Qubits: A 2.5 D Architecture for Error-Corrected Quantum
Computing,” in 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2020, pp. 173–185.

[13] C. Chamberland, K. Noh, P. Arrangoiz-Arriola, E. T. Campbell, C. T.
Hann, J. Iverson, H. Putterman, T. C. Bohdanowicz, S. T. Flammia,
A. Keller, G. Refael, J. Preskill, L. Jiang, A. H. Safavi-Naeini, O. Painter,
and F. G. S. L. Brandão, “Building a fault-tolerant quantum computer
using concatenated cat codes,” arXiv preprint arXiv:2012.04108, 2020.

[14] H. Bombin, I. H. Kim, D. Litinski, N. Nickerson, M. Pant,
F. Pastawski, S. Roberts, and T. Rudolph, “Interleaving: Modular archi-
tectures for fault-tolerant photonic quantum computing,” arXiv preprint
arXiv:2103.08612, 2021.

[15] J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin,
T. Matsuura, D. Su, B. Q. Baragiola, S. Guha, G. Dauphinais et al.,
“Blueprint for a scalable photonic fault-tolerant quantum computer,”
Quantum, vol. 5, p. 392, 2021.

[16] A. Erhard, H. P. Nautrup, M. Meth, L. Postler, R. Stricker, M. Stadler,
V. Negnevitsky, M. Ringbauer, P. Schindler, H. J. Briegel, R. Blatt,
N. Friis, and T. Monz, “Entangling logical qubits with lattice surgery,”
Nature, vol. 589, no. 7841, pp. 220–224, 2021.

[17] G. Torlai and R. G. Melko, “Neural decoder for topological codes,”
Physical review letters, vol. 119, no. 3, p. 030501, 2017.

[18] P. Das, C. A. Pattison, S. Manne, D. Carmean, K. Svore, M. Qureshi, and
N. Delfosse, “A scalable decoder micro-architecture for fault-tolerant
quantum computing,” arXiv preprint arXiv:2001.06598, 2020.

[19] N. Delfosse and N. H. Nickerson, “Almost-linear time decoding algo-
rithm for topological codes,” arXiv preprint arXiv:1709.06218, 2017.

[20] A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T.
Chong, “NISQ+: Boosting quantum computing power by approximating
quantum error correction,” in Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, 2020, p. 556–569.

[21] Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, and Y. Tabuchi, “QECOOL:
on-line quantum error correction with a superconducting decoder for
surface code,” in Proceedings of the 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2021, pp. 451–456.

[22] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler,
A. Fowler, and H. Neven, “Encoding electronic spectra in quantum
circuits with linear T complexity,” Physical Review X, vol. 8, no. 4,
p. 041015, 2018.

[23] C. Gidney and M. Ekerå, “How to factor 2048 bit rsa integers in 8 hours
using 20 million noisy qubits,” Quantum, vol. 5, p. 433, 2021.

[24] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM Journal on Computing,
vol. 26, no. 5, p. 1484–1509, 1997.

[25] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Physical review letters, vol. 103, no. 15,
p. 150502, 2009.

[26] S. Arunachalam and R. de Wolf, “Guest column: A survey of quantum
learning theory,” ACM SIGACT News, vol. 48, no. 2, pp. 41–67, 2017.

[27] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” Theoretical computer science, vol. 560,
pp. 7–11, 2014.

[28] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[29] J. Kelly, R. Barends, A. Fowler, A. Megrant, E. Jeffrey, T. White,
D. Sank, J. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, I. Hoi, C. Neill, P. O’Malley, C. Quintana, P. Roushan,

A. Vainsencher, J. Wenner, A. Cleland, and J. Martinis, “State preserva-
tion by repetitive error detection in a superconducting quantum circuit,”
Nature, vol. 519, no. 7541, pp. 66–69, 2015.

[30] A. Y. Kitaev, “Quantum computations: algorithms and error correction,”
Russian Mathematical Surveys, vol. 52, no. 6, pp. 1191–1249, 1997.

[31] A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, “Towards practical
classical processing for the surface code: timing analysis,” Physical
Review A, vol. 86, no. 4, p. 042313, 2012.

[32] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal
clifford gates and noisy ancillas,” Phys. Rev. A, vol. 71, p. 022316, Feb
2005.

[33] M. Dorojevets, P. Bunyk, and D. Zinoviev, “FLUX chip: design of a
20-GHz 16-bit ultrapipelined RSFQ processor prototype based on 1.75-
µm LTS technology,” IEEE Transactions on Applied Superconductivity,
vol. 11, no. 1, pp. 326–332, 2001.

[34] P. Farrell, R. Clarke, M. Vesely, S. Shauck, B. Konigsburg, P. Tschirhart,
and S. Rahman, “A superconducting 8-bit CPU design,” in Applied
Superconductivity Conference, 2018, pp. 1EOr1C–03.

[35] Y. Nobumori, T. Nishigai, K. Nakamiya, N. Yoshikawa, A. Fujimaki,
H. Terai, and S. Yorozu, “Design and implementation of a fully
asynchronous SFQ microprocessor: SCRAM2,” IEEE Transactions on
Applied Superconductivity, vol. 17, no. 2, pp. 478–481, 2007.

[36] R. Sato, R. Sato, Y. Hatanaka, Y. Ando, M. Tanaka, A. Fujimaki,
K. Takagi, and N. Takagi, “High-speed operation of random-access-
memory-embedded microprocessor with minimal instruction set archi-
tecture based on rapid single-flux-quantum logic,” IEEE Transactions
on Applied Superconductivity, vol. 27, no. 4, p. 1300505, 2017.

[37] M. Tanaka, F. Matsuzaki, T. Kondo, N. Nakajima, Y. Yamanashi,
A. Fujimaki, H. Hayakawa, N. Yoshikawa, H. Terai, and S. Yorozu,
“A single-flux-quantum logic prototype microprocessor,” in 2004 IEEE
International Solid-State Circuits Conference, 2004, pp. 298–529.

[38] X. Peng, Q. Xu, T. Kato, Y. Yamanashi, N. Yoshikawa, A. Fujimaki,
N. Takagi, K. Takagi, and M. Hidaka, “High-speed demonstration of bit-
serial floating-point adders and multipliers using single-flux-quantum
circuits,” IEEE Transactions on Applied Superconductivity, vol. 25,
no. 3, pp. 1–6, 2015.

[39] I. Nagaoka, M. Tanaka, K. Sano, T. Yamashita, A. Fujimaki, and K. In-
oue, “Demonstration of an energy-efficient, gate-level-pipelined 100
TOPS/W arithmetic logic unit based on low-voltage rapid single-flux-
quantum logic,” in 2019 IEEE International Superconductive Electronics
Conference, 2019, pp. 1–3.

[40] I. Nagaoka, M. Tanaka, I. Koji, and A. Fujimaki, “A 48 GHz 5.6 mW
gate-level-pipelined multiplier using single-flux quantum logic,” in 2019
IEEE International Solid-State Circuits Conference, ISSCC 2019, ser.
Digest of Technical Papers - IEEE International Solid-State Circuits
Conference. United States: Institute of Electrical and Electronics
Engineers Inc., 3 2019, pp. 460–462.

[41] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathemat-
ics, vol. 17, no. 3, pp. 449–467, 1965.

[42] G. Duclos-Cianci and D. Poulin, “Fast decoders for topological quantum
codes,” Physical review letters, vol. 104, no. 5, p. 050504, 2010.

[43] S. S. Tannu, D. M. Carmean, and M. K. Qureshi, “Cryogenic-DRAM
Based Memory System for Scalable Quantum Computers: A Feasibility
Study,” in Proceedings of the International Symposium on Memory
Systems, 2017, p. 189–195.

[44] R. Naik, N. Leung, S. Chakram, P. Groszkowski, Y. Lu, N. Earnest,
D. McKay, J. Koch, and D. Schuster, “Random access quantum infor-
mation processors using multimode circuit quantum electrodynamics,”
Nature communications, vol. 8, no. 1, pp. 1–7, 2017.

[45] D. E. Drake and S. Hougardy, “A simple approximation algorithm for the
weighted matching problem,” Information Processing Letters, vol. 85,
no. 4, pp. 211 – 213, 2003.

[46] A. Holmes, “Quantum and classical algorithms and optimizations en-
abling practical quantum computation,” Ph.D. dissertation, The Univer-
sity of Chicago, 2020.

[47] Y. Yamanashi, T. Kainuma, N. Yoshikawa, I. Kataeva, H. Akaike,
A. Fujimaki, M. Tanaka, N. Takagi, S. Nagasawa, and M. Hidaka, “100
GHz demonstrations based on the single-flux-quantum cell library for the
10 kA/cm2 Nb multi-layer process,” IEICE Transactions on Electronics,
vol. 93, no. 4, pp. 440–444, 2010.

[48] S. Nagasawa, K. Hinode, T. Satoh, M. Hidaka, H. Akaike, A. Fujimaki,
N. Yoshikawa, K. Takagi, and N. Takagi, “Nb 9-layer fabrication process
for superconducting large-scale SFQ circuits and its process evaluation,”

xiii

IEICE Transactions on Electronics, vol. E97.C, no. 3, pp. 132–140,
2014.

[49] A. Fujimaki, M. Tanaka, R. Kasagi, K. Takagi, M. Okada, Y. Hayakawa,
K. Takata, H. Akaike, N. Yoshikawa, S. Nagasawa, K. Takagi, and
N. Takagi, “Large-scale integrated circuit design based on a Nb nine-
layer structure for reconfigurable data-path processors,” IEICE Transac-
tions on Electronics, vol. E97.C, no. 3, pp. 157–165, 2014.

[50] T. Van Duzer, L. Zheng, S. R. Whiteley, H. Kim, J. Kim, X. Meng, and
T. Ortlepp, “64-kb hybrid Josephson-CMOS 4 kelvin RAM with 400
ps access time and 12 mw read power,” IEEE Transactions on Applied
Superconductivity, vol. 23, no. 3, pp. 1 700 504–1 700 504, 2013.

[51] E. S. Fang and T. Van Duzer, “A Josephson integrated circuit simulator
(JSIM) for superconductive electronics application,” in Extended Ab-
stracts of 1989 International Superconductivity Electronics Conference,
1989, pp. 407–410.

[52] D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, “Zero static power
dissipation biasing of RSFQ circuits,” IEEE Transactions on Applied
Superconductivity, vol. 21, no. 3, pp. 776–779, 2011.

[53] O. A. Mukhanov, “Energy-efficient single flux quantum technology,”
IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp.
760–769, 2011.

[54] S. Bravyi, M. Englbrecht, R. König, and N. Peard, “Correcting coherent
errors with surface codes,” npj Quantum Information, vol. 4, no. 1, pp.
1–6, 2018.

[55] A. G. Fowler and J. M. Martinis, “Quantifying the effects of local many-
qubit errors and nonlocal two-qubit errors on the surface code,” Physical
Review A, vol. 89, no. 3, p. 032316, 2014.

[56] D. Gottesman, “The heisenberg representation of quantum computers,”
arXiv preprint quant-ph/9807006, 1998.

[57] V. Kolmogorov, “Blossom V: a new implementation of a minimum cost
perfect matching algorithm,” Mathematical Programming Computation,
vol. 1, no. 1, pp. 43–67, 2009.

xiv

