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What is Computer architecture?

- “Computer Architecture is the science and art of selecting and
Interconnecting hardware components to create computers that
meet functional, performance and cost goals.”

- WWW Computer Architecture Page
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(ISA)

Quantum Substrate p
(Superconducting Qubit) WZD mk

Cryogenic QEC architecture
MICRO2017

Table I. Overview of ¢QASM instructions. The operator : :

cavity cavity cavity

Virtualized Logical Qubit
MICRO2020

concatenates the two bit strings.

Type Syntax Description
Coatrol CoMPare GPR R and &t and store the result into the comparison flags.
(BRanch) Jump et if the specified comparison flag is ‘1"

Data Transfer

(Fetch Branch Register) pecified comparison flag into GPR Rd.

(LoaD Immediate) a(imm[19.0]. 32).

(LoaD Unsigned Ims = Imm| 14.0]:Rs(16.0].

(Loab from me 0ad data from memory address K=+ Ima into GPR Rdl
o] Keepthe (STore to memory ¥) Store the value of GPR R in memory address Rt_+ Imm
Reset Signal (Feich Measurement Result) Fetch the result of the last measurement instruction

on qubit i into GPR Rdl
block signal Grow ] Grow Out
Subcircuit Logical Logical and, or, exclusive or, not
Grow In. Arithmetic Addition and subtraction.
r_Req.
; Pak_Req. Out ke (Quantum WAIT Immediate/Register) Specify a timing point by waiting for the
% ~ i © number of cycles indicated by the immediate value Tmm o the value of GPR R,
r_Req. In.
A r_Req Teget Specily (Sct Mask Immediate for Single-/Two-qubit operations) Update the single- (two-Jqubit
7 Pair_Grant Out A operation target register 5d (Td).
; Pair_Grant In Q. Bundle Applying operations on qubits afer waiting for a small number of cycles indicated by 7
— v
S & Pair Out
A Pair in
S my
_ Hot Syndrome ———

SFQ surface code decoder, ISCA2020

K. Bertels et al., “eQASM: An Executable Quantum Instruction Set Architecture,” in HPCA2019.

C. Duckering et al., “Virtualized Logical Qubits: A 2.5 D Architecture for Error-Corrected Quantum Computing,” in MICRO2020.
S. Tannu et al., “Taming the Instruction Bandwidth of Quantum Computers via Hardware-Managed Error Correction,”
A. Holmes et al., “NISQ+: boosting quantum computing power by approximating quantum error correction,

=2FILLU

in MICRO2017.
" in ISCA2020.
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mEm (SCA mmm MICRO mmm HPCA mmm ASPLOS
20 2003~2018 0~1%1EE
| BRSO off | L0 2019 5.4% (15/276)
30 A QULATIS] [Qlsim] 2020 3.6% (11/308)
[Q3DE] 2021 5.0% (16/323
20 - [XQsim] T 0 (16/323)
2022 7.7% (25/325)
10 - 2023 6.1% (25/412)
2024 5.3% (25/475)
O_
2003 2007 2011 2015 2019 2023 2025 7.6% (41/539)
7—F2D My TERSZE (ISCA, MICRO, HPCA, ASPLOS)
(CHITDEFETEHLRTERSEL (2003~2025%F) Ny TEBRESERICHITDIEFTEHEERE

[Dist.] R. Van Meter, W. Munro, K. Nemoto, K. Itoh, “Distributed Arithmetic on a Quantum Multicomputer”, ISCA2006.

[QULATIS] Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, Y. Tabuchi, “QULATIS: A Quantum Error Correction Methodology toward Lattice Surgery”, HPCA2022.

[Q3DE] Y. Suzuki, ..., K. Inoue, T. Tanimoto, “Q3DE: A fault-tolerant quantum computer architecture for multi-bit burst errors by cosmic rays”, MICRO2022.

[XQsim] I. Byun, ..., T. Tanimoto, M. Tanaka, K. Inoue, J. Kim, “XQsim: modeling cross-technology control processors for 10+K qubit quantum computers”, ISCA2022.
[Qlsim] D. Min, ..., M. Tanaka, K. Inoue, J. Kim, “Qlsim: Architecting 10+K Qubit QC Interfaces Toward Quantum Supremacy”, ISCA2023.

[LSQCA] T. Kobori, Y. Suzuki, Y. Ueno, T. Tanimoto, S. Todo, Y. Tokunaga, “LSQCA: Resource-Efficient Load/Store Architecture for Limited-Scale Fault-Tolerant
Quantum Computing”, HPCA2025.
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: Q Copr Quantum Classical Interface e
I | e e <
Ex. Register (iming Convolion =1 | o mOde 0 I
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I I"sc‘;:c CCCCC Q Control g = = [l B 5 mode 1| = - F. - . i
Host CPU Store i - L= — (= 1
e 4l ireer=he== { S - - - }q‘i, it
!(E:):Jnt t|| o ‘;‘g 0T = o S =
3 : : mode 2| = ~
Ol - Sl _AE I HE
i ! + ? — - L@ - — -
| Synchronization Clock S— — S
cavity cavity cavity
Quantum Microarchitecture (Delft U.) Virtualized Logical Qubits (Chicago U.)
MICRO’17 Best paper MICRO’20 Best paper runner-up

o iTBHL ) —F OF v D CHEEFTEMIAR (MG =ND
e VME (&FBHR) +)7—F7T0FvDIMETA> )\ DT XK

X. Fu et al., “An Experimental Microarchitecture for a Superconducting Quantum Processor”, MICRO 2017.
C. Duckering et al., “Virtualized Logical Qubits: A 2.5D Architecture for Error-Corrected Quantum Computing”, MICRO 2020.
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ERNINDEFETER ) —FT I F i3 END

FERMARIN—T MXE (BS) First quantum paper
in top conferences

University of Chicago 374 (21.0%) ISCA2003
(Fred Chong (@UCSB until 2015) )
Georgia Tech. 15+874 (13.1%) MICRO2017

(Moinuddin Qureshi,
Swamit Tannu (UW-Madison))

UC San Diego 20 (11.3%) ASPLOS2019
(Yufei Ding)

Princeton University 147K (7.9%) ISCA2007
(Margaret Martonosi) (MIChicago & H[E6)

o 50% MmN LAI4T)IL—T 5 HTLD
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Chicago University
- [##A] M. Oskin, F. Chong,|I. Chuang, Il Kubiatowicz,

Building Quantum Wires: The Long and the Short of it, ISCA2003. (arXiv2001.06598)

- [Bx3L] A. Litteken, L. Seifert, J. Chadwick, N. Nottingham, F. Chong, J. Baker,

Qompress: Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix Operations for
Communication Reduction, ASPLOS2023.

Georgia Tech.
- [#D#A] P. Das, C. Pattison, S. Manne, D. Carmean, K. Svore, M. Qureshi| N. Delfosse,
AFS: Accurate, Fast, and Scalable Error-Decoding for Fault-Tolerant Quantum Computers, HPCA2022.
(arXiv2001.06598)

- [Bx3L] S. Vittal, P. Das, M. Qureshi, Astrea: Accurate Quantum Error-Decoding via Practical Minimum-
Weight Perfect-Matching, ISCA2023.
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Y. Ueno, M. Kondo, M. Tanaka, Y. Suzuki, Y. Tabuchi, “QECOOL: On-Line Quantum Error Correction with a Superconducting Decoder for Surface Code”,
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Logical X error rate P,
— =
< S

—— break-even

P> — d=5, QECOOL

: — d=7, QECOOL

770 0% 4-9, qecooL

s —— d=11, QECOOL
] —— d=13, QECOOL

—-= d=5, MWPM

7 L df —-= d=7, MWPM

; —-= d=9, MWPM

il B —.= d=11, MWPM

i —-= d=13, MWPM

1073 10~ 10!
Physical qubit error rate (p)

Experimental condition
Measurement process is performed once every 1 us
Each QECOOL Unit has a 7-bit buffer to store syndrome values

d times
measurements

&

Code distance d
Target lattice shape

If buffer entry size is greater than K = 3, QECOOL is performed; otherwise, each Unit waits for

measurement process
MWPM operates with batch-QEC manner

LZEUMiE: QECOOLp = 0.01, MWPM p = 0.03
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Row ; ;
Controller Master, @ Unity Unit, , 4 @ s
g - N3 IR E
5y Row ] : -
— = Master, . ?, --f| Unit, il Unity 5 .1 =
To each Unit el e | — e E—
\\\,,,7,,/> e k= CurrentRow . PR
Restart >| State machine Token £
out
; [ Hold Fla S
Token in ﬁ@— ) I
— . ) ~
Spike in — 2| Prioritize > Sgﬂie S&'ke
—
Ack. in = -
Meas. in >
Push > | Reg Ack. Ack. S - —— R
Pop . el E out out i - E—
— | 1770 pm

Architecture overview of QECOOL SFQ design layout of QECOOL Unit

JIs: 3177 Area: 1.274 mm? Latency: 215 ps Power cons.: 2.78 uW

Decoder power consumption per one logical qubits
Supposed = 9,

9X%x8X2X 2'78[MW] =1400 uW
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[4] C. Chamberland and E. T. Campbell, PRX Quantum 3, 010331 (2022). [5] M. Beverland et al., PRX Quantum 3, 020342 (2022).
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Reference time stamp for SELECT subroutine of guantum phase estimation
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Cumulative distribution of average reference period for SELECT circuit
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Reference time stamp for SELECT subroutine of quantum phase estimation
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Cumulative distribution of average reference period for SELECT circuit
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Reference time stamp for SELECT subroutine of guantum phase estimation
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Reference time stamp for SELECT subroutine of quantum phase estimation
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Cumulative distribution of average reference period for SELECT circuit
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5 0.41 v . (T-gates are major
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Reference time stamp for SELECT subroutine of quantum phase estimation
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Reference time stamp for SELECT subroutine of guantum phase estimation
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- v Low parallelism e et
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ndex

Our goal
Higher memory density with a

Our approach
v Divide qubit plane into register and memory region

v Utilize access locality and optimize for biased access pattern

v’ Conceal the overhead by T-gate operations and bottleneck operation

o 0.0+— R e T T
10° 10! 102 103 104
Reference Period [code beat]
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~~~~~~~ Supply magic state to CR
~~~~~~~ Magic State Factory
(MSF)
Scan-Access l SUPPLY MAGIC
~~~~~~ Memory LOAD :
. §emory Region| (5 AM) } &——| 4™ Computational
STOR)E Register (CR)
.................... ] \.Computing Region

e ERE(CT—AHTIIZEET D AT EIEZHEK
o« T—A)LDFEENVZIER U CETE MR (R U
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ISA of our load/store architecture for FTQC

| Type | Syntax | Latency | Description |

Load/ M ID M C variable | (Load) Load logical qubit from SAM to CR
( emory STCM variable | (Store) Store logical qubit from CR to SAM
Store PZ.C C 0 beat (Zero-Init) Initialize a logical qubit to [0} state
Preparation PP.C C 0 beat (Plus-Init) Initialize a logical qubit to [+) state
PM C variable (Magic-init) Move magic state from MSF to CR
Unitary HD.C C 3 beat (Hadamard) Hadamard gate on a logical qubit
PH.C C 2 beat (Phase) Phase gate on a logical qubit
MX.C C V 0 beat (Pauli-X Meas) Pauli-X measurement on a logical qubit and store outcome
Measurement MZ.C C V 0 beat (Pauli-Z Meas) Pauli-Z measurement on a logical qubit and store outcome
MXX.C Cl C2 V | 1 beat (Pauli-X X Meas) Pauli- X X measurement on logical qubits and store outcome
MZZ.C Cl1 C2 V | 1 beat (Pauli-Z Z Meas) Pauli-Z Z measurement on logical qubits and store outcome
Control SK V variable | (Skip) Skip next instruction if a provided value is zero
In-Memory Preparation PZ.M M 0 beat (Zero-Init) Initialize a logical qubit to |0} state
PP.M M 0 beat (Plus-Init) Initialize a logical qubit to [+) state
. HD.M M variable | (Hadamard) Hadamard gate on a logical qubit
In-Memory Unitary PH.M M variable | (Phase) Phase gate on a logical qubit
MX.M M V 0 beat (Pauli-X Meas) Pauli-X measurement on a logical qubit and store outcome
In-Memory Measurement MZ.M M V 0 beat (Pauli-Z Meas) Pauli-Z measurement on a logical qubit and store outcome
MXX.M C M V variable | (Pauli-X X Meas) Pauli-X X measurement on logical qubits and store outcome
MzZzZ.M C M V variable | (Pauli-ZZ Meas) Pauli-Z 2 measurement on logical qubits and store outcome
| Optimized Unitary | CX M1 M2 | variable | (CNOT) CNOT gate on logical qubits

v'  Load/Store instructions are independent of memory region
implementation (e.g., QEC code, allocation)
v' Enable of abstraction, easily programable, and high program portability
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(-) Decreasing performance due to long memory access latency

Example of worst case

v Classical computer uses many techniques for improving memory access latency

Cache / Scratchpad memory Multi-channel memory In-memory computing
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Basic evaluation for benchmark program

Execution time / #instruction

[code beat]
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87% memory density
with 6% execution time overhead

(Ekisting: up to 67%)
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Basic evaluation for benchmark program

Execution time / #instruction

'43 280 260 127 433 400 60 143

o

i 87% memory dgnsity
— 10’ / with 6% executgpn time overhead
8 (Ekisting: up to 67%)
e
S
s O
O,

Large time overhead Small time overhead

- Less T-gates - Low parallelism and many T-gates
- Not bottleneck in practice - Bottleneck for many practical applications
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Each Points: how large the conventional floorplan

in Hybrid floorplan (Left is larger)
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brid floorplan for benchmark program

SELECT

v" Trend change at specific ratio )
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Optimized hybrid floorplan evaluation for SELECT

_8 Each point: different #Logical qubits=467, 1711, 3753, 6595, 10235 (Right is larger)
Q #MSF=1(Resource limited) ;. #MSF=4(Resource abundant)
o p
S 4 4 b
=

[
2 s e
. — e gl .
‘E 21 e 2 - L ‘i
o ._l‘-. /l/
-— '-“-—Z" —."'..- [ . l———-I--.lI
5otk et R
O 0.5 0.6 0.7 0.8 0.9 1.0 0.5 . 0.6 0.7 0.8 0.9 1.0
0 Memory density
LL] --=-- Point --=-- Line --=-- Hybrid Point --=-- Hybrid Line #*  Conventional

v" Hybrid floorplan can reduce execution time by slightly decreasing memory density
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Optimized hybrid floorplan evaluation for SELECT

Each point: different #Logical qubits=467, 1711, 3753, 6595, 10235 (Right is larger)

Execution time overhead

#MSF=1(Resource limited) s
4.
31
2 -~ 2

0.8

0.7

0.5 0.6

--=-- Point --u-- Line

1.0 0.5
Memory density

Hybrid Point

#MSF=4(Resource abundant)

41

.
"
A
|
|
o
o
e "
- [
o
,’.’
©
06 07 . 1.0
--=-- Hybrid Line * 4 Conventional

# factory=1, instance size=21 = 92% memory density with 7% execution time overhead
by Hybrid point-SAM architecture

# factory=4, instance size=101 = 94% memory density with 6% execution time overhead
by Hybrid line-SAM architecture
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